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Chemical kinetic modeling has been used for many years in process optimization, 

estimating real-time material performance, and lifetime prediction.  Chemists have tended 
towards developing detailed mechanistic models, while engineers have tended towards global or 
lumped models.  Many, if not most, applications use global models by necessity, since it is 
impractical or impossible to develop a rigorous mechanistic model.  Model fitting acquired a bad 
connotation in the thermal analysis community after that community realized a decade after other 
disciplines that deriving kinetic parameters for an assumed model from a single heating rate 
produced unreliable and sometimes nonsensical results.  In its place, advanced isoconversional 
methods, which have their roots in the Friedman and Ozawa-Flynn-Wall methods of the 1960s, 
have become increasingly popular.  In fact, as pointed out by the ICTAC kinetics project in 2000, 
valid kinetic parameters can be derived by both isoconversional and model fitting methods as 
long as a diverse set of thermal histories are used to derive the kinetic parameters.  The current 
paper extends the understanding from that project to give a better appreciation of the strengths 
and weaknesses of isoconversional and model-fitting approaches.  Examples are given from a 
variety of data sets. 

Isoconversional methods are undoubtedly the quickest way to derive kinetic parameters 
for complex reaction profiles involving multiple processes.  However, isoconversional methods, 
sometimes called “model-free” kinetic analyses, are not assumption-free, and it is important to 
understand those assumptions and the limits they impose on predictions outside the range of 
calibration.  The essential characteristic of the Friedman isoconversional method is that it is a 
sequential model.  In practice, it is accomplished by establishing a form factor that transforms 
shape as a function of temperature or heating rate by having different activation energies 
associated with different extents of conversion.  Alternatively, the form factor can be absorbed 
into an effective first-order frequency factor as long as the conversion step size is sufficiently 
small.  Energetic materials appear to have reaction characteristics that are generally consistent 
with the isoconversional principle as long as the confinement conditions are constant and 
appropriate to the intended application.  

Despite its strengths and common utility, the isoconversional principle is fundamentally 
inapplicable to reaction networks having competing reactions, in which the ultimate outcome of 
the reaction can be different depending on the temperature, and for concurrent reactions that 
change their relative reactivity over the temperature range of interest.  Also, it is also not a good 
technique for sparse data sets or when the extent of conversion is incomplete and greatly different 
in different experiments, which is often the case with isothermal experiments. 

Explicit models are potentially more flexible but suffer from issues of uniqueness.  
Explicit models can be either sequential or concurrent in nature, or any mixture thereof.  
Numerical integration techniques allow models of essentially any complexity to be used in an 
application mode, but unique calibration of many parameters by nonlinear regression becomes 
problematic without simplifying assumptions or independent experiments that emphasize or 
isolate different characteristics.  If the reaction is fundamentally sequential in characteristic, a 
concurrent reaction model can have errors upon extrapolation outside the calibration interval. 
                                                 
1 This work was performed under the auspices of the U. S. Department of Energy by University of 
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A useful approach for heterogeneous materials is using parallel reactions with a 
distribution of activation energies and a common frequency, or occasionally, a frequency factor 
that increases exponentially with activation energy.  An isoconversional model would work just 
as well in this situation as long as baseline correction issues can be overcome.  On the other hand, 
an issue that arises in fossil fuel conversion, polymer decomposition, and energetic material 
decomposition is that competition between intermediate product escape and further reaction, 
either by itself or with unreacted material, causes a different set of products depending on 
temperature and confinement conditions.  This situation is easily modeled, in principle, using 
traditional approaches, but it is not obvious how it can be modeled using the isoconversional 
approach. 
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Fig. 1.  The best way to derive kinetic models is of continuing interest.  A variety of modeling 
approaches are considered here.  All have limitations, and the best method depends on 
circumstances. 
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Fig 2.  Model fitting works best when needs to mix endothermic and exothermic reactions in 
varying proportions in different circumstances. 



 
      Predicted % reacted for three years at the specified temperatures 

Model 25 oC 50 oC 80 oC 25±10 50±30 
Isoconversional 3.11 24.97 72.62 5.19 54.43
Discrete E distribution 4.51 24.80 70.43 6.49 52.95
3-parallel nth-order 3.27 25.47 69.56 5.67 54.50
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Fig. 3.  For systems with a monotonically increasing activation energy, isoconversional and 
parallel reaction models work equally well. 
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Fig 4.  For multi-step decomposition of energetic materials, sometimes the activation energy 
decreases with conversion.  The important point for lifetime prediction is whether the underlying 
reaction network is parallel or sequential in nature. 
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Fig. 5.  Differential isoconversional models can successfully mimic the delayed autocatalysis 
often seen in propellant aging, while parallel nucleation-growth models tend to have aging 
processes switch order.  However differential isoconversional models are very sensitive to 
baseline selection when the baseline is not smooth. 
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Fig. 6.  Three additional simulated data sets were created and analyzed by both parallel 
nucleation-growth and isoconversional kinetic models. 
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Fig. 7.  Differential isoconversional and model fitting approaches have comparable reliability—
sometimes one works better and sometimes the other.  A good fit to data does not guarantee 
accurate extrapolation.  Self-consistency between the two approaches substantially increases 
confidence for extrapolation. 
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Fig. 8.  Some integral isoconversional kinetic methods are not as reliable.  The popular Ozawa-
Flynn-Wall method significantly overestimates activation energies and gives poor extrapolations.  
The traditional way of predicting conversion for integral isoconversional methods fails when the 
activation energy drops substantially as a function of conversion.  Piecewise integral 
isoconversional methods solve that problem but have no intrinsic advantage over differential 
isoconversional methods. 
 




